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ABSTRACT
Fashion recommendation has attracted increasing attention from
both industry and academic communities. This paper proposes a
novel neural architecture for fashion recommendation based on
both image region-level features and user review information. Our
basic intuition is that: for a fashion image, not all the regions are
equally important for the users, i.e., people usually care about a few
parts of the fashion image. To model such human sense, we learn an
attention model over many pre-segmented image regions, based on
which we can understand where a user is really interested in on the
image, and correspondingly, represent the image in a more accurate
manner. In addition, by discovering such fine-grained visual prefer-
ence, we can visually explain a recommendation by highlighting
some regions of its image. For better learning the attention model,
we also introduce user review information as a weak supervision
signal to collect more comprehensive user preference. In our final
framework, the visual and textual features are seamlessly coupled
by a multimodal attention network. Based on this architecture, we
can not only provide accurate recommendation, but also can accom-
pany each recommended item with novel visual explanations. We
conduct extensive experiments to demonstrate the superiority of
our proposed model in terms of Top-N recommendation, and also
we build a collectively labeled dataset for evaluating our provided
visual explanations in a quantitative manner.
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1 INTRODUCTION
With the ever prospering of on-line shopping for fashion products,
fashion recommendation has attracted increasing attention from
both industry and academic communities. Different from other
fields, user decisions in the fashion domain are highly dependent
on the product appearance [12, 18], for example, people usually pur-
chase a clothing only after browsing its images when shopping on
the Internet. Following this character, recent years have witnessed
many efforts on exploiting product images for fashion recommen-
dation [12, 15, 33]. Despite effectiveness, existing methods mostly
transform a whole fashion image into a fixed-length vector, which
may limit themselves in three aspects: (i) intuitively, people may
only care about a few regions of a fashion image, and different users
may have their individual preferences. As exampled in Figure 1,
according to the review information, the focus of user A mainly lies
on the neck area, while user B may be more interested in the pocket
region. Apparently, such fine-grained visual preference is important
for understanding different users, and can derive more accurate
user similarities for enhancing the utility of collaborative filtering.
However, the global image embedding in existing methods is hard
to discover and exploit user local preferences, which may arouse
negative impacts on the final recommendation performance. (ii)
Many irrelevant image regions, such as the white pants and shoes
in Figure 1, are indiscriminately encoded into the global representa-
tion of the fashion image, which may introduce too much noise into
the model learning process. (iii) Recommendation explainability is
important for enhancing user shopping experience [45]. In the fash-
ion domain, item appearance is significant to user behaviors, thus
providing visual explanations can be both intuitive and effective.
However, the global image embedding prohibits existing methods
from discovering user specific visual preference, and therefore, fail
to generate reasonable visual explanations.

For closing these gaps, we propose a visually explainable collab-
orative filtering (called VECF for short) method for more effective
fashion recommendation. Our general idea is to represent a fashion
image by learning an attention model over many pre-segmented
regions. With the supervision of collaborative filtering information,
the attention mechanism is expected to highlight valuable image
regions, while degrade the impact of the noisy parts. By discovering
such fine-grained user preference, our recommended items can also
be explained visually, which is more vivid, convenient, attractive,
and comprehensively-efficient as compared with traditional textual
explanations [7, 26, 31, 46] for on line users in the fashion domain.
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Figure 1: Example of users with different fine-grained vi-
sual preferences. User reviews may have partial correspon-
dences to the fashion image. The pink italic and green bold
fonts indicate the review information that can and cannot
be aligned with some specific image regions.

Although this seems to be a promising direction, it is non-trivial
due to the following challenges: (i) Less informative supervision
signal. Previous fashion recommender models mostly base their
supervision on the binary user implicit feedback. However, such
signal is sparse and less informative in revealing user fine-grained
visual preference, i.e., discovering where a user is interested in on a
fashion image. (ii) Difficulties in selecting appropriate image
segmentation method. For a fashion image, an ideal segmenta-
tion strategy is to utilize image processing techniques (e.g., object
detection) to divide it semantically into regions, such as the neck,
sleeve and body for a clothing. However, it is time-consuming and
unscalable to define semantic labels and obtain their annotations
for training in each fashion category. What’s worse, it’s hard to
set a unified segmentation granularity, since user preferences are
usually diverse and changeable, e.g., some people may only care
about the cuff of a clothing, while others may tend to take the sleeve
as a whole. (iii) Lack of evaluation dataset. Last but not least,
once the model learned, there is no publicly available dataset to
quantitatively evaluate whether the provided visual explanations
(i.e., the learned attention weights) are reasonable.

For addressing these issues, we propose a multimodal atten-
tion network with fixed region proposals for fine-grained visual
preferences modeling. To begin with, we introduce user review in-
formation for enhancing the model supervision signal. Comparing
with implicit interaction data, user review is much more powerful
in reflecting user opinions and sentiments (as shown in Figure 1),
which may provide more thorough and constraint supervision for
better learning the visual attention weights. From the model design
perspective, the review information is modeled by a customized
LSTM model, and to effectively couple different modalities, we
seamlessly infuse visual features into the word generation process,
which allows us to combine multimodal information in a unified
framework. For practicability, we directly divide each fashion image
into many small grids, such that they can be flexibly assembled
into different preference granularities via the attention mechanism.
Comparing with existing methods, our approach is not only able to
improve the recommendation performance, but also can generate
intuitive visual explanations for the recommended fashion products.
We conduct extensive experiments on real-world datasets to verify

the effectiveness of our proposed models in terms of Top-N rec-
ommendation. And also, we build a collectively labeled dataset to
evaluate our generated visual explanations from both quantitative
and qualitative perspectives.

2 PROBLEM FORMULATION
For easy understanding, we formally define our problem in this sec-
tion. Suppose we have a user setU = {u1,u2, ...,uN } and an item
setV = {v1,v2, ...,vM }. The interaction set between the users and
items is defined as: O = {(i, j ) |user i has interacted with item j .}.
Each fashion item j ∈ V is attached with an image, which can be
seen as the visual content of this item. By existing feature extraction
methods, such as deep convolutional neural networks (CNNs) [32],
we represent the image of item j as Fj = [f 1j ; f

2
j ; ...; f

h
j ] ∈ R

D×h ,
where f kj ∈ R

D is a D dimensional vector corresponding to the
k-th spatial region of the image, and h is the number of the re-
gions. Accordingly, the set of all items’ visual features is denoted
as F = {Fj |j ∈ V}. In addition, we also have review information,
from which we can collect more comprehensive user preferences
and item properties. Letwi j = {w

1
i j ,w

2
i j , ...,w

li j
i j } (i ∈ U , j ∈ V) be

the textual review of user i on item j, where wt
i j is the t-th word,

and li j is length of the review. We define the set of all user reviews
asW = {wi j |(i, j ) ∈ O)}.

Formally, given a multimodal fashion dataset {U ,V,O,F ,W},
our task is to learn a predictive function f , such that for each user,
it can accurately rank all the fashion items according to his/her
preference. And further, the internal parameters or intermediate
outputs should provide visual explanations (from F ) for the final
recommended items.

3 THE VECF MODEL
In this section, we detail our model principle (see Figure 2). Specif-
ically, we first describe the visual attention mechanism for fine-
grained fashion image modeling. Then, we introduce user review
information as a weak supervision signal to enhance the model
learning process. At last, we present the overall optimization objec-
tive.

3.1 Fine-grained Visual Preference Modeling
As mentioned before, visual features are important factors that
influence user behaviors in the fashion domain. It’s intuitive that a
user is unlikely to pay exactly the same attention to different regions
of a fashion image. So different from previous work [12, 18], which
mostly transform the whole image into a fixed vector and ignore
the discrepancies of user preference upon different image regions,
we derive an item image’s embedding by attentively combining
its pre-extracted region features, and utilize it to enhance the item
representation for computing the final prediction.

Similar to many previous work [6, 12, 24], we extract regional
features of a fashion image by CNN models. In specific, we feed
each fashion image into the pre-trained VGG-19 [32] model, and
use the 14 × 14 × 512 feature map obtained from its conv5 layer
as the final representation of the image. For each spatial point in
the 14 × 14 grid, its 512-dimensional (D = 512) feature corresponds
to the representation of a potential region of interest (ROI) in the



Personalized Fashion Recommendation with Visual
Explanations based on Multimodal Attention Network SIGIR ’19, July 21–25, 2019, Paris, France

Figure 2: The proposed VECF model. The red lines indicate
the attention mechanism designed for fashion image mod-
eling. The blue lines highlight themodeling of user reviews.

image. Accordingly, for the image of item j, we obtain a feature
matrix Fj ∈ RD×h , where each column f kj ∈ R

D corresponds to
an image region, and h = 196 is the number of total regions1.

For representing a fashion image by taking user fine-grained
visual preference into consideration, we design a visual attention
mechanism upon the extracted region-level features (as shown in
Figure 2). Mathematically, the final embedding of item j’s image is
computed by pooling feature matrix Fj under “user-region” aware
attention weights as:

Ii j = Fjαi j =
∑h

k=1 αi jk · f
k
j , (1)

where αi j = [αi jk ] ∈ Rh contains the attention weights jointly
determined by the embedding of user i and the region feature f kj ,
that is:

ai jk = E2[ReLU(E1[(Wupi ) ⊙ (Wf f
k
j )])]

αi jk =
exp(ai jk )∑h

k ′=1 exp(ai jk ′ )
(2)

wherepi ∈ RK is the embedding of user i ,Wu ∈ R
s×K ,Wf ∈ R

s×D

are weighting parameters that project pi ∈ RK and f kj ∈ R
D into

the same space, E1 (·) and E2 (·) are linear transformations, ReLU is
the Rectified Linear Unit (ReLU) [25]. “⊙” is the element-wise multi-
plication (or called Hadamard multiplication). The learned attention
weights can reflect user fine-grained visual preference, which will
be leveraged to provide visual explanations in our experiments.

3.2 Review enhanced Model Supervision
As mentioned before, on many fashion shopping platforms, peo-
ple often express their opinions in the form of textual reviews.
Comparing with the simple implicit feedback, such review informa-
tion is typically more informative, pooling an extensive wealth of
knowledge in revealing user preference. See the example in Figure 1,
although both user A and B bought a same top (both users exhibited
positive implicit feedback for the item), the aspects they cared about
were quite different according to their posted reviews, i.e., user A
cared more about the fitting and the neck opening, while user B
1 If more computational resources are available, we can also free the VGG component
and fine-tune Fj to explore better performance.

was more interested in the clothing’s quality and pocket. From the
model learning perspective, the simply user implicit feedback will
back propagate exactly the same gradient for these two training
samples, while the additional modeling of review information can
bring us with opportunities to bias the embeddings of user A and
user B toward different directions to capture their ground truth
preferences.

Based the above analysis, we introduce user review as a weak
supervision signal into our model to help enhance the recommen-
dation performance and explainability. A major challenge here is
how to integrate heterogeneous information (i.e., user review and
product image) into a unified framework. We base the review in-
formation modeling on the well-known LSTM unit [42], and for
coupling different feature modalities, we revise Vanilla LSTM by
seamlessly infusing the attentive image embedding Ii j into the word
generation process. In specific, given the review of user i on item j ,
i .e ., the word listwi j = {w

1
i j ,w

2
i j , ...,w

li j
i j }, the computational rules

of the modified LSTM are presented as follows:

it = σ (Ei ([ct−1i j ;ht−1; I t−1i j ])

ft = σ (Ef ([ct−1i j ;ht−1; I t−1i j ])

ot = σ (Eo ([ct−1i j ;ht−1; I t−1i j ])

дt = tanh(Eд ([ct−1i j ;ht−1; I t−1i j ])
et = ft ⊙ et−1 + it ⊙ дt

ht = ot ⊙ tanh(et )

(3)

where [·; ·; ·] concatenates input vectors, it , zt , ot and дt are gate
functions, each of which is obtained by applying a composite func-
tion (i .e ., sigmoid function σ (·) or hyperbolic tangent function
tanh(·) +linear embedding E (·)) to the concatenated input.cti j ∈ R

O

is the embedding of the input wordwt
i j , and ht ∈ R

Z is the hidden
state.

The core of the revised LSTM unit is the temporal attentive image
embedding I ti j , which is a contextual input derived based on the
original attentive image embedding Ii j , the global embedding of
user i and item j, and the hidden state ht , that is,

I ti j = ReLU(EI ([βtEPQ ([pi ;qj ]); (1 − βt )Ii j ])), (4)

where qj is the embedding of item j, EI (·), EPQ (·) are linear trans-
formations, and βt = σ (w⊤ht ) is a time-varying gate function
to model whether the current word is generated from the image
features or the user/item embeddings in a soft manner. Ideally, to
the words having explicit correspondences to the image (e .д., the
“neck” and “pocket” in the review shown in Figure 1), βt will be
small and the attentive embedding of image Ii j contributes more to
the temporal attentive embedding. On the contrary, to the words
not having correspondences to the image (e .д., the “nice quality”
in user B’s review in Figure 1), βt will be large and the temporal
attentive embedding relies more on the global user embedding pi
and item embedding qj .

Given the hidden state ht , we can predict the probability of
the word at time step t by: p (wt

i j |w
1:t−1
i j , I t−1i j ) = softmax(Wvht ),

whereWv ∈ R
V×Z is a weighting matrix that project the hidden

state into a "vocabulary-sized"(V ) vector.
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3.3 Optimization Objective
Based on the above components, the final likeness score in our
model from user i to item j is predicted by:

ŷi j = P (pi , qj ⊙ (WI Ii j )), (5)

where WI ∈ R
K×D is the weighting parameter. P (·) is empiri-

cally specified as a L-layer neural network upon the concatenate
operation due to its higher effectiveness on our datasets, that is,
P (x , y) = ϕL (ϕL−1 (...ϕ1 ([x ;y]))), where ϕi is the sigmoid active
function. In this predictive network, the pooling result Ii j reflects
the visual preference from user i to different image regions of item
j. The element-wise multiplication, which has been demonstrated
to be efficient [2] for feature interaction modeling, is leveraged to
combine item embedding qj with its adaptive visual embedding
Ii j . By matching qj ⊙ (WI Ii j ) with the user’s global embedding,
the final likeness from user i to item j is predicted by taking user
fine-grained visual preferences into consideration.

In the training phase, we supervise the learning process by both
user implicit feedback and review information. The final objective
function to be maximized is:

L =
∑
i ∈U

*..
,

∑
j ∈Vi

+

logσ (ŷi j ) +
∑

j ∈V/Vi
+

log(1 − σ (ŷi j ))
+//
-
+

β
∑

(i, j )∈O

li j∑
t=1

log p (wt
i j |w

1:t−1
i j , I t−1i j ) − λ∥Θ∥22 ,

(6)

where β and λ are hyper parameters. Θ is the set of parame-
ters need to be regularized. Vi

+ is the set of items that user i has
bought before. Corresponding to each positive instance, we uni-
formly sample one item from the unpurchased item set V/Vi

+

as the negative instance. In this objective function, the first term
is used to maximize the likelihood of user implicit feedback, the
second term corresponds to the loss function that predicts cur-
rent words from historical observations, and the last term aims to
regularize the parameters to avoid over fitting. In our model, the
parameters can be easily learned in an end-to-end manner, and
once the framework converged, we are not only able to provide
personalized recommendation for a target user according to the pre-
dicted score (i .e . ŷi j ), but also can accompany each recommended
item with visual explanations by highlighting some regions of its
image according to the learned attention weights (i .e ., αi j for Ii j ).
In our architecture, because the heavy neural language model is
designed as an output component, it will not influence our model’s
runtime efficiency at test time, which is important for a practical
recommender system. Specifically, suppose E2 projectsRs toRl and
E1 projects Rl to R, the total complexity of the non-linear layers
in the predictive function P is Q . At test time, our model’s com-
plexities for making prediction and providing visual explanation
(for a user-item pair) only depend on equation (5) and (2), which is,
O (hs (K +D+l )+KD+Q ) and O (hs (K +D+l )), respectively. In the
following experiments, we will show that by jointly capturing the
preferences from items’ images and users’ reviews, we can achieve
both improved recommendation accuracy and reasonable visual
explanations.

Table 1: Statistics of the datasets in our experiments. Differ-
ent datasets cover various data characters, and the density
ranges from 0.035% to 0.47%.

Dataset #User #Item #Word #Interaction Density
Baby 2211 380 8636 3927 0.47%
Boys&Girls 6999 1026 17510 10780 0.15%
Men 23139 5690 77182 70949 0.054%
Women 35330 14383 107504 177611 0.035%

Table 2: Summary of the models in our experiments. We
compare the specific information used in eachmodel as well
as the model depth.

Reference Model Information Depth
[30] BPR - shallow
[12] VBPR image shallow
[21] NRT text deep
[14] NFM++ image+text deep
- VECF image+text deep

4 EXPERIMENTS
In this section, we evaluate our proposed model focusing on four
research questions, that is,
• RQ 1: Whether our model can enhance the performance of

fashion recommendation as compared with other state-of-the-art
methods?
• RQ 2: How do different hyper-parameters in our model influ-

ence the final recommendation performance?
• RQ 3:What are the effects of different model components in

our framework for the eventual results?
• RQ 4: Whether our generated visual explanations (e.g., the

learned visual attention weights) are reasonable for the recom-
mended items?
We begin by introducing the experimental setup, and then report
and analyze the experimental results to answer these research ques-
tions.

4.1 Experimental Setup
4.1.1 Datasets. There are many public available fashion datasets,
including FashionCV [33], Amazon.com2 [11], Tradesy.com [12],
etc. Among these datasets, Amazon.com suits our problem best,
because it is the only one that simultaneously provides us with both
user review and product image information. To explore our model’s
capability on different categories, we split the fashion dataset (i.e.,
"Clothing, Shoes and Jewelry") of Amazon.com into four different
subsets related toMen,Women, Boys&Girls and Baby, respectively.3
The final statistics of the these datasets are summarized in Table 1.
We can see they cover different genders and ages, and the data
characters vary in both size and sparsity, e.g., "Baby" is a small and
dense dataset, while "Women" is much larger, but sparser.

4.1.2 Evaluation methods. In our experiments, each user’s 70%
interactions are used for model training, while the remaining is left

2http://jmcauley.ucsd.edu/data/amazon/.
3We use the item meta information provide by http://jmcauley.ucsd.edu/data/amazon/
to segment the original data.
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Table 3: Summary of the performance for baselines and our model. The starred numbers are the best baseline results. The
bolded numbers are the best performance of each column, and all numbers in the table are percentage numbers with ‘%’
omitted.

Dataset Baby Boys&Girls Men Women
Measure@10(%) F1 HR NDCG F1 HR NDCG F1 HR NDCG F1 HR NDCG

BPR 2.426 13.53 4.719 2.424 13.37 5.979 2.541 14.06 5.810 2.596 14.32 6.258
VBPR 2.728 15.29 6.584 2.543 13.99 5.961 3.524 19.16 9.566 2.779 15.08 7.110
NRT 2.513 13.89 5.514 2.977 16.43 7.522∗ 3.635 19.80 9.799 3.167 17.33 7.568∗

NFM++ 3.174∗ 17.64∗ 7.057∗ 3.125∗ 17.48∗ 6.833 3.819∗ 21.09∗ 11.53∗ 3.276∗ 19.34∗ 7.512
VECF 3.244 17.94 8.036 3.253 17.97 8.862 4.716 25.75 12.16 3.421 18.84 8.987

for testing. Once a model learned, we first rank all the items for each
user, and then truncate the ranking list at position N (which is set
as 10 in our experiments) to investigate the Top-N recommendation
problem. For higher evaluation efficiency, we randomly sample
100 items for performance ranking the testing. For comparison,
the widely used metrics, including F1 [19], Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) [17], are utilized
to evaluate different models. In general, F1 and HR measure the
recommendation accuracy based on the overlapping between the
recommended items and the actually interacted ones, while NDCG
aims to evaluate the performance by taking the ranking positions
of the correct items into consideration.

4.1.3 Baselines. We adopt the following representative and state-
of-the-art methods as baselines for performance comparison:
• BPR: The bayesian personalized ranking [30] model is a pop-

ular method for Top-N recommendation. We adopt matrix factor-
ization as the prediction component.
•VBPR: The visual bayesian personalized ranking [12] model is

a well known method for recommendation based on visual features.
This model has been demonstrated to be very competitive in the
field of fashion recommendation.
• NRT: The neural rating regression model [21] is a deep rec-

ommender based on user review information, where the textual
features are incorporated as an output component. In the experi-
ments, the original objective function designed for rating prediction
is revised as the pairwise ranking loss of BPR to model user implicit
feedback.
• NFM++: The neural factorization machine (NFM) [14] is a

deep architecture for effective feature interaction modeling. For
comparison, we enhance original NFM by inputting the review in-
formation as well as the global image vectors as contextual features.
Finally, our model (see Figure 2) of visually explainable collabora-
tive filtering is denoted as VECF. As our algorithm aims to model
the relationship between users and items, we mainly compare our
method with user-centered (user to item) models. We leave out
the comparison with item-centered (item to item) models, such
as IBR [27] and BPR-DAE [33], because performance discrepan-
cies may be caused by the user models for personalization. For
easy understanding, we summarize all the models compared in our
experiments in Table 2.

4.1.4 Implementation details. We initialize all the trainable pa-
rameters according to a uniform distribution in the range of [−1, 1].
And then, the parameters are learned by the Adam optimizer [20]

with a learning rate of 0.01. We tune the dimension of user/item em-
beddingK in the range of {50, 100, 150, 200, 250, 300}. Theweighting
parameter β is searched in {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101}.
For all the experiments, the batch size and the regularization co-
efficient λ are empirically set as 256 and 0.0001, respectively. The
number of predictive layers L is set as 4. For the review information,
we first pre-process it by the Natural Language Toolkit4, and then
the word embeddings for each dataset are pre-trained based on the
Skip-gram model5. Our experiments are conducted on a sever with
1 TITAN X GPU, 256G memory and 40 cores.

4.2 Top-N Recommendation (RQ1)
The overall comparison between our VECF model and the baselines
are presented in Table 3, we can see:
• By integrating user reviews or product images, VBPR and NRT

obtained better performance than BPR in most cases, which verifies
the effectiveness of these information for the task of Top-N rec-
ommendation. The underlying reason can be that: comparing with
user/item ID information, external knowledge, such as user review
or product image, can provide additional contents for user/item
profiling, which may bring additional opportunities to understand
the real similarities between users or items for better collaborative
filtering.
• NFM++ achieved better performance than the other baselines

in most cases. This is not surprising, because NFM++ leveraged
more information to assist user profiling, and the nested feature
interaction modeling of NFM++ can effectively couple different
modalities for more powerful expressiveness.
• Encouragingly, we find that our VECF model was better than

NFM++ across different datasets inmost cases. This result ascertains
the effectiveness of our proposed model and positively answers
RQ1. As mentioned before, profiling visual features is important for
fashion recommendation. However, NFM++ learns a fixed vector to
represent the whole fashion image, even though a user may be only
interested in some particular regions. In contrast, our model utilize
attention mechanism to focus on user favored image regions, which
helps to better capture user preferences and eventually improve
the recommendation performance.

4.3 Parameter analysis (RQ2)
In this section, we study how the embedding dimension K and the
hyper parameters β influence our model’s performance. Specifically,

4https://www.nltk.org/
5http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Figure 3: Performance of our model with different Ks across various datasets.

Figure 4: Performance of our model with different βs across various datasets.

we first tune K by setting β as 0.0001. Then we fix K as the optimal
value, and observe the model performance by exploring different
βs. Due to the space limitation, unless specified, we only report
F1@10 and NDCG@10, while the results on HR@10 are similar and
omitted.
• Influence of the embedding dimension K . The results of

tuning embedding dimension K are presented in Figure 3, from
which we can see: in most cases, the best performances of our
model across different datasets were achieved when K is moderate,
while too large embedding dimension (e.g., K = 300) didn’t help
to further promote the results. This observation is consistent with
many previous studies [14, 44], and the reasons can be that: the
redundant parameters will increase the model complexity and may
lead to the over-fitting problem, which will weaken the model
generalization ability.
• Influence of the hyper parameter β . In our model, β de-

termines the trade-off between the modeling of implicit feedback
and user review information. The performance of our model with
different βs are presented in Figure 4. We found that the optimal
value of β varies across different datasets, i.e., β = 0.0001 for Baby
andWomen, β = 0.01 for Boys&Girls, β = 1.0 for Men. It seems that
β is more of a domain-dependent setting, since we were not able to
find any correlation with dataset size, sparsity and etc. However,
one consistent fact is that too large β (such as β = 10), which means
we focus too much on the review information, didn’t perform well
on all the datasets. We speculate that too large β may submerge
the implicit feedback signal, which is important for propagating

collaborative filtering information, and therefore, will limit the final
performance.

4.4 Model Ablation Study (RQ3)
There are many components in our model, for better understanding
their impacts on the final performance, in this section, we conduct
ablation study by comparing our VECF model with its two varia-
tions. The first compared method is called VECF(-rev), where we
remove the user review information from the outputs (i.e., β = 0).
The other variation is named as VECF(-att), where we drop the
attention mechanism and directly average all the regional features6.
The comparison results on F1 and NDCG are presented in Fig-
ure 5. We found that the relative performance ranking between
two variants are always interchanging across different datasets,
while by incorporating review information and attention mecha-
nism together, the final VECF model consistently performed better
than both of its variations. The improvement from VECF(-att) to
VECF justify our intuition in section 3.1, that is, discriminating
user fine-grained visual preference may have positive effect on the
performance of fashion recommendation. The superiority of VECF
against VECF(-rev) highlights the effectiveness of review informa-
tion, which verifies our analysis in the beginning of section 3.2. At
last, the attention mechanism and review information may play dif-
ferent roles for the improved results, and our designed architecture

6For different datasets, K and β are set as the optimal values according to section 4.3.
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Figure 5:Model ablation study. The final VECFModel is com-
pared with its two variations, where VECF(-rev) doesn’t in-
volve review information, while VECF(-att) directly average
all the regional visual features.

provides a reasonable integration between them for more effective
user preference modeling.

4.5 Evaluation of Visual Explanations (RQ4)
As mention before, once our model learned, we can provide each
recommendation with visual explanations by highlighting the im-
age regions with highest attention weights (i.e., larger αi jk ). In this
section, we evaluate whether the provided visual explanations are
reasonable, i.e., whether the highlighted regions of the image can
reveal a user’s potential interests on the recommended item. We
first conduct quantitative analysis based on a dataset with collec-
tively labeled ground-truth. And then, to provide better intuitions
for the highlighted image regions, we present and analyse several
examples learned by our models in a qualitative manner.

4.5.1 Quantitative evaluation. To the best of our knowledge,
this is the first work on visually explainable fashion recommenda-
tion, and there is no publicly available dataset with labeled ground-
truth to evaluate whether the visual explanations (i.e., the visual
highlights) generated by our model are reasonable or not. To tackle
the problem, we build a collectively labeled dataset in a crowd sourc-
ing manner. The workers are asked to identify the image regions
that may explain why a user bought a particular item, based on the
user’s purchase records and her review written on the target item.

More specifically, we randomly select 500 user-item pairs in the
testing set of Men for the workers to label. The image of the target
item is equally divided into 7 × 7 = 49 square regions. A label
task for a worker is to identify 5 out of the 49 regions that the
worker believes are most relevant to the user’s preference. For each
label task, we provide the following two information sources to the
worker for reference:
• Images and the corresponding reviews of the products that
the user interacted in the training set.
• The user’s review on the target item to be labeled.

In a label task, a worker is first required to read the image-review
pairs of the user’s interacted items. After that, the worker will be
shown the target image as well as the corresponding review, and be
asked to identify 5 regions of the image. In this labeling process, the
worker is expected to fully understand the user’s preferences ac-
cording to his behaviors in the training set. Then the worker should
simulate himself as the real user, and identify the most relevant
image regions based on the corresponding review information.

As far as we know, few work can provide visual explanations
for the recommended items. We compare VECF with its variation

Table 4: Performance comparison between VECF and VECF(-
rev) on visual explanation task by identifying Top-M out of
196 candidate regions. All numbers in the table are percent-
age numbers with ‘%’ omitted. Bolded numbers are used to
label the best performance, and the relative improvement
against the second best model is presented in the bracket.

Method Random VECF(-rev) VECF

F1

M=1 0.777 1.220 2.273 (86.3% ↑)
M=2 1.430 2.012 3.180 (58.1% ↑)
M=3 1.968 2.516 4.513 (79.4% ↑)
M=4 2.281 2.857 4.514 (58.0% ↑)
M=5 2.749 3.350 4.774 (42.5% ↑)

NDCG

M=1 2.975 4.348 7.551 (73.7% ↑)
M=2 2.975 4.436 6.666 (50.3% ↑)
M=3 3.458 4.254 7.089 (66.6% ↑)
M=4 2.882 4.039 6.320 (56.5% ↑)
M=5 3.501 4.284 6.455 (50.7% ↑)

VECF(-rev), aiming to study whether the review information is
helpful for learning better visual attention weights. We set the
dimension of user/item embedding K as 250, and the weighting
parameter β as 1.0, based on which we can achieve the best Top-N
recommendation performance on the dataset of Men. The metrics
of F1 and NDCG are utilized as the evaluation methods. Recall that
both VECF and VECF(-rev) models work on 14 × 14 = 196 image
regional features. In our experiment, we use each model to identify
M regions out of the 196 candidates according to the learned atten-
tion weights (αi, j,k ), and an identified region is considered correct
if it falls into the human-labeled regions. The results by comparing
our predicted regions against the ground-truth are presented in
Table 4. It should be noted that selecting a few regions out of 196
candidates itself poses a difficult problem as a ranking task, which
is shown by the inferior performance of a randomized selection.
By attentively learning the importances of different image regions
based on user implicit feedback, the VECF(-rev) model obtained
better performance than the random strategy. When we further
introduce the supervision of review information, the final VECF
model generated much more accurate visual explanations, which
verifies the effectiveness of user reviews for enhancing the learning
of visual attention weights.

4.5.2 Qualitative evaluation. Recommendation explainability
is often assessed qualitatively [13, 29, 37, 39]. In this section, we
evaluate our model in a similar manner to provide intuitive under-
standings on the generated visual explanations. We compare VECF
with VECF(-rev), and present their provided explanations on the
same product. We highlight one region for each image according
to the learned attention weights (i.e., αi, j,k ’s), and the examples
are presented in Table 5. From the results, we have the following
observations:

Both VECF and VECF(-rev) can highlight some fashion elements
on the product images. In Case 1, for example, the toe of the shoes
were highlighted by VECF, and in Case 2, VECF(-rev) labeled the
wrist of the gloves. By comparing the highlighted regions with
the user review information, we can see: VECF can highlight more
accurate image regions than VECF(-rev). In Case 3, for example, the
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Table 5: Examples of both satisfied and failed visual explanations, where each row represents a user-item interaction. The sec-
ond and third columns show the item images and the user review information. The last two columns present the highlighted
image regions (as well as their coordinates) predicted by VECF and VECF(-rev), respectively. Bolded italic font indicates corre-
spondences between the user review information and the visual explanations provided by VECF.

Target Item Textual Review Visual Explanation
VECF(-rev) VECF

1 I loved about the previous generation and expanded the toe box a little to
improve the fit. great buy, highly recommended.

2 They fit my stubby fingered hand pretty well. I bought the large and my
hand measured 9.25&34 at the knuckles.

3 These sunglasses fit well and I like the design around the nose; they sit
rather than dig like most other glasses can. The included pouch is great for

keeping your glasses safe and scratch free.

4 The cap, which is made of a fairly heavy fabric, makes the head feel hot when
worn for several hours in a warm gym or outside on a warm day. I, therefore,

tend to wear it only when it is cold outside . -bi

5 These are comfortable and are a great value. I like the waist band and they are
so so so (more words) comfortable....; -)-bi

6 The fabric is amazingly soft and the fit is perfect. I own several items from next
level and will continue to add to my collection with different colors and styles.

Amazing company, Amazing product.

user praised the nose of the glasses by “...I like the design around
the nose...”, and VECF successfully labeled the nose regions as a
visual explanation, while VECF(-rev) highlighted the lens of the
glasses. Case 1 and 2 also imply similar superiorities of VECF against
VECF(-rev) in terms of visual explanation. These observations fur-
ther demonstrate that the supervision of user reviews can provide
informative user preference for constraining the visual attention
learning in a more reasonable manner.

In addition to many favorable results, we have also noticed some
bad cases. In general, there are three types of undesirable results,
and the representative examples are listed as the last three cases
in Table 5: In case 4, both VECF and VECF(-rev) highlighted the
background regions, which are meaningless for providing visual
explanations. In practice, this problem can be alleviated by con-
straining the candidate area to the regions containing the target
products, which can be easily accomplished based on some objec-
tive detection technologies. In case 5, some specific features (e.g.,the
waist band) of the fashion product (i.e., the pants) is discussed in
the user review information. However, as the image provided in
the dataset is a packing box of the pants, both VECF and VECF(-rev)
fail to provide desirable visual explanations. In case 6, although our
models highlighted some meaningful image regions, the contents

(such as fabric, fit, etc) described in the review information can
hardly be reflected in the product image, so the provided visual
explanation didn’t agree with the user review information. This
manifests that although user review information can be helpful for
providing better visual explanations, it also contains many noises
which may bias the attention learning process. We leave the review
denoising problem as a future work, which may further improve
the quality of our provided visual explanations.

5 RELATEDWORK
In this section, we briefly review the recent progress in the areas
of fashion recommendation and recommendation explainability,
which are highly relevant with our work. By illustrating the na-
ture of existing methods, we’d like to highlight the key differences
between our work and the previous ones.

5.1 Fashion recommendation
Recent years have witnessed the increasing popular of fashion rec-
ommendation in both industry and academic communities. For
effectively discovering user behavior patterns in the fashion do-
main, many promising recommender models have been proposed.
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Generally speaking, these methods mostly based themselves on
the learning of user visual preferences. For example, McAuley et
al. [27] studied the relationships between different products based
on their appearances in the field of e-commerce, and released a
large dataset for promoting this research direction. He et al. [12]
represented each product image as a fixed length vector, and in-
fused it into the bayesian personalized ranking (BPR) framwork [30]
to improve the performance of Top-N recommendation. Kang et
al. [18] attempted to jointly train the image representation as well
as the parameters in a recommender model, and used the learned
embedding to generate fashion images, which provided inspiring
insights on the relationship between different ways of leveraging
content information (i.e., using it as an input feature or outputting
it as a target. ). Lin et al. [23] incorporated generation loss for bet-
ter visual understanding in the fashion recommendation domain.
Han et al. [10] jointly learned a visual-semantic embedding and the
compatibility relationships among fashion items in an end-to-end
fashion. Song et al. [33] proposed a content-based neural scheme
to model the compatibility between fashion items based on the
Bayesian personalized ranking (BPR) framework. Hu et al. [15]
proposed a functional tensor factorization method to model the
interactions between user and fashion items.

In essence, a fashion image in the above methods is usually
transformed into a fixed-length vector to combine with various
personalization models. While in our model, we made a further step
to discover user fine-grained visual preferences, that is, modeling
user various attentions on different image regions. Our model is
not only able to improve the fashion recommendation performance,
but also can generate visual explanations for the recommended
items.

5.2 Explainable Recommendation
Explainable recommendation essentially aims to solve the problem
of "why an item is recommended to a user", which is important in
a practical system due to its benefits on enhancing the recommen-
dation perverseness as well as the users’ satisfaction [8, 43, 45, 47].
Existing explainable models usually interpret a recommendation
based on external knowledges, among which user textual review is
a mostly adopted one. Based on this information, early methods,
such as HFT [26] and RBLT [34], mainly focused on combining
topic models (e.g., LDA [3]) with matrix factorization (MF) for col-
lective user review and rating modeling. The core idea of these
methods is aligning each dimension in the user latent factors with
a topic in the review information, and leveraging the top words
of the learned topic to explain the user preference represented by
the latent factors. Despite effectiveness, the "Bag-Of-Words (BOG)"
assumption held by topic models is limited in capturing review
semantic information, which may degrade the performance as well
as the interpretability of these recommender models [48]. Fortu-
nately, the prospering of deep (representation) learning technology
shed some lights on this problem, and many recent efforts have
been devoted to build deep explainable recommender models for
more accurate semantic mining on the review information. Ac-
cording to the manners of providing explanations, these models
can be largely divided into two classes. On one hand, many meth-
ods [5, 9, 31, 36, 40] provide explanations in an "extractive" manner.

The basic idea is representing a target item by merging all its re-
view information into a document, and leveraging user embedding
as a query to search the most valuable parts in the item review
documents to form the final recommendation explanations. In par-
ticular, D-Attn [31] and NARRE [5] leveraged attention mechanism
to automatically identify important review information under the
supervision of user-item ratings. Motivated from the intuition that
a user’s attentions on her previous reviews should be dependent on
the item she is going to buy, CARL [40] andMPCN [36] utilized "Dy-
namic fusion" and "Co-attention" techniques to "extract" tailored
explanations for the target item. DER [9] further took user dynamic
preference into consideration. On the other hand, there are also
many models [21, 22, 28, 35] exploring to provide explanation in a
"generative (or abstractive)" manner. Instead of using some exist-
ing review information, these methods proposed to automatically
generate some neural language sentences to explain the recommen-
dation. In specific, NRT [21], gC2S [35] and NOR [22] leveraged
recurrent neural network (RNN) or its variations to generate ex-
planations word by word. ExpansionNet [28] further incorporated
product "aspects" to provide more diverse explanation sentences.

In addition to user review information, recent years have also wit-
nessed the emergence of explainable recommendation with knowl-
edge graph [1, 4, 16, 38, 41]. The key idea of these methods is to
extend item relationship with external knowledge, and make infer-
ence along knowledge paths to understand various user behavior
patterns. In specific, KSR [16] utilized Key-Value Memory Network
(KV-MN) to involve KB information in the context of sequential
recommendation. ECFKG [1] borrowed the idea from translation-
based objective function to build a personalization model based
on multiple item relationships. RippleNet [38] proposed an end-
to-end knowledge-aware recommender by taking the advantages
of both embedding- and path-based methods. KPRN [41] consid-
ered dependencies among different entities, and leveraged attention
mechanism to discover suitable knowledge paths for recommenda-
tion explanations. KTUP [4] studied how to mutually enhance the
tasks of Top-N recommendation and knowledge graph completion
by learning a joint model.

Although both the above methods and our model aim to con-
struct explainable recommender models, we explore to capture
users’ visual preference, and correspondingly provide explanations
from a novel visual perspective.

6 CONCLUSIONS
In this paper, we propose to jointly leverage image region-level
features and user review information for enhancing fashion recom-
mendation. To this end, we build a visually explainable collaborative
filtering model based on a multimodal attention network to seam-
lessly couple different feature modalities. Extensive experiments
verified that our model is not only able to provide accurate rec-
ommendations, but also can provide visual explanations for the
recommended items.

This paper actually made a first step towards personalized fash-
ion recommendation with visual explanations, and there is still
much room to improve it. To begin with, even though visual ex-
planations are intuitive and vivid in the fashion domain, not all
features are appropriate to be explained visually, for example, the
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quality of a clothing and the warmth of a pair of shoes. In the fu-
ture, we will study the relationships between textual and visual
explanations (e.g. their complementarity or substitutability), based
on which we can explain different item aspects in their best-suited
modalities. Then, as mentioned before, user review information,
as a weak supervise signal, usually contains much noise, which
may bias the model learning process. In the next step, we will pay
more attention to extract more effective review information for
better user profiling and recommendation explanations. In addition,
we can also extend our framework to other domains, where visual
features are important factors that influence user behaviors.
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